Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
J Med Chem ; 67(8): 6238-6252, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38598688

Thirty-one novel albaconazole derivatives were designed and synthesized based on our previous work. All compounds exhibited potent in vitro antifungal activities against seven pathogenic fungi. Among them, tetrazole compound D2 was the most potent antifungal with MIC values of <0.008, <0.008, and 2 µg/mL against Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, respectively, the three most common and critical priority pathogenic fungi. In addition, compound D2 also exhibited potent activity against fluconazole-resistant C. auris isolates. Notably, compound D2 showed a lower inhibitory activity in vitro against human CYP450 enzymes as well as a lower inhibitory effect on the hERG K+ channel, indicating a low risk of drug-drug interactions and QT prolongation. Moreover, with improved pharmacokinetic profiles, compound D2 showed better in vivo efficacy than albaconazole at reducing fungal burden and extending the survival of C. albicans-infected mice. Taken together, compound D2 will be further investigated as a promising candidate.


Antifungal Agents , Candida albicans , Cryptococcus neoformans , Microbial Sensitivity Tests , Tetrazoles , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/therapeutic use , Tetrazoles/pharmacology , Tetrazoles/chemistry , Tetrazoles/chemical synthesis , Tetrazoles/pharmacokinetics , Tetrazoles/therapeutic use , Animals , Humans , Candida albicans/drug effects , Mice , Cryptococcus neoformans/drug effects , Structure-Activity Relationship , Aspergillus fumigatus/drug effects , Drug Discovery , Drug Resistance, Fungal/drug effects , Candidiasis/drug therapy , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme System/metabolism
2.
ACS Omega ; 9(11): 12478-12499, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38524433

In the respiratory chain of the majority of aerobic organisms, the enzyme alternative oxidase (AOX) functions as the terminal oxidase and has important roles in maintaining metabolic and signaling homeostasis in mitochondria. AOX endows the respiratory system with flexibility in the coupling among the carbon metabolism pathway, electron transport chain (ETC) activity, and ATP turnover. AOX allows electrons to bypass the main cytochrome pathway to restrict the generation of reactive oxygen species (ROS). The inhibition of AOX leads to oxidative damage and contributes to the loss of adaptability and viability in some pathogenic organisms. Although AOXs have recently been identified in several organisms, crystal structures and major functions still need to be explored. Recent work on the trypanosome alternative oxidase has provided a crystal structure of an AOX protein, which contributes to the structure-activity relationship of the inhibitors of AOX. Here, we review the current knowledge on the development, structure, and properties of AOXs, as well as their roles and mechanisms in plants, animals, algae, protists, fungi, and bacteria, with a special emphasis on the development of AOX inhibitors, which will improve the understanding of respiratory regulation in many organisms and provide references for subsequent studies of AOX-targeted inhibitors.

3.
J Med Chem ; 67(5): 4007-4025, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38381075

Invasive fungal infections pose a serious threat to public health and are associated with high mortality and incidence rates. The development of novel antifungal agents is urgently needed. Based on hit-to-lead optimization, a series of 2,4,6-trisubstituted triazine hydrazone compounds were designed, synthesized, and biological evaluation was performed, leading to the identification of compound 28 with excellent in vitro synergy (FICI range: 0.094-0.38) and improved monotherapy potency against fluconazole-resistant Candida albicans and Candida auris (MIC range: 1.0-16.0 µg/mL). Moreover, 28 exhibited broad-spectrum antifungal activity against multiple pathogenic strains. Furthermore, 28 could inhibit hyphal and biofilm formation, which may be related to its ability to disrupt the fungal cell wall. Additionally, 28 significantly reduced the CFU in a mouse model of disseminated infection with candidiasis at a dose of 10 mg/kg. Overall, the triazine-based hydrazone compound 28 with low cytotoxicity, hemolysis, and favorable ADME/T characteristics represents a promising lead to further investigation.


Antifungal Agents , Candidiasis , Animals , Mice , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Microbial Sensitivity Tests , Fluconazole/pharmacology , Candida albicans , Candidiasis/drug therapy , Candidiasis/microbiology
4.
Nat Commun ; 14(1): 5984, 2023 09 26.
Article En | MEDLINE | ID: mdl-37752106

Induction of hypothermia during hibernation/torpor enables certain mammals to survive under extreme environmental conditions. However, pharmacological induction of hypothermia in most mammals remains a huge challenge. Here we show that a natural product P57 promptly induces hypothermia and decreases energy expenditure in mice. Mechanistically, P57 inhibits the kinase activity of pyridoxal kinase (PDXK), a key metabolic enzyme of vitamin B6 catalyzing phosphorylation of pyridoxal (PL), resulting in the accumulation of PL in hypothalamus to cause hypothermia. The hypothermia induced by P57 is significantly blunted in the mice with knockout of PDXK in the preoptic area (POA) of hypothalamus. We further found that P57 and PL have consistent effects on gene expression regulation in hypothalamus, and they may activate medial preoptic area (MPA) neurons in POA to induce hypothermia. Taken together, our findings demonstrate that P57 has a potential application in therapeutic hypothermia through regulation of vitamin B6 metabolism and PDXK serves as a previously unknown target of P57 in thermoregulation. In addition, P57 may serve as a chemical probe for exploring the neuron circuitry related to hypothermia state in mice.


Biological Products , Hypothermia , Animals , Mice , Body Temperature Regulation , Hypothermia/chemically induced , Pyridoxal Kinase/genetics , Pyridoxine , Vitamin B 6 , Biological Products/pharmacology
5.
J Enzyme Inhib Med Chem ; 38(1): 2244696, 2023 Dec.
Article En | MEDLINE | ID: mdl-37553905

A series of novel triazole derivatives containing aryl-propanamide side chains was designed and synthesised. In vitro antifungal activity studies demonstrated that most of the compounds inhibited the growth of six human pathogenic fungi. In particular, parts of phenyl-propionamide-containing compounds had excellent, broad-spectrum antifungal activity against Candida albicans SC5314, Cryptococcus neoformans 22-21, Candida glabrata 537 and Candida parapsilosis 22-20 with MIC values in the range of ≤0.125 µg/mL-4.0 µg/mL. In addition, compounds A1, A2, A6, A12 and A15 showed inhibitory activities against fluconazole-resistant Candida albicans and Candida auris. Preliminary structure-activity relationships (SARs) are also summarised. Moreover, GC-MS analysis demonstrated that A1, A3, and A9 interfered with the C. albicans ergosterol biosynthesis pathway by inhibiting Cyp51. Molecular docking studies elucidated the binding modes of A3 and A9 with Cyp51. These compounds with low haemolytic activity and favourable ADME/T properties are promising for the development of novel antifungal agents.


Antifungal Agents , Triazoles , Humans , Antifungal Agents/chemistry , Triazoles/chemistry , Molecular Docking Simulation , Fluconazole/pharmacology , Candida albicans , Structure-Activity Relationship , Microbial Sensitivity Tests
6.
Acta Pharmacol Sin ; 44(10): 2103-2112, 2023 Oct.
Article En | MEDLINE | ID: mdl-37193754

Checkpoint inhibitors such as PD-1/PD-L1 antibody therapeutics are a promising option for the treatment of multiple cancers. Due to the inherent limitations of antibodies, great efforts have been devoted to developing small-molecule PD-1/PD-L1 signaling pathway inhibitors. In this study we established a high-throughput AlphaLISA assay to discover small molecules with new skeletons that could block PD-1/PD-L1 interaction. We screened a small-molecule library of 4169 compounds including natural products, FDA approved drugs and other synthetic compounds. Among the 8 potential hits, we found that cisplatin, a first-line chemotherapeutic drug, reduced AlphaLISA signal with an EC50 of 8.3 ± 2.2 µM. Furthermore, we showed that cisplatin-DMSO adduct, but not semplice cisplatin, inhibited PD-1/PD-L1 interaction. Thus, we assessed several commercial platinum (II) compounds, and found that bis(benzonitrile) dichloroplatinum (II) disturbed PD-1/PD-L1 interaction (EC50 = 13.2 ± 3.5 µM). Its inhibitory activity on PD-1/PD-L1 interaction was confirmed in co-immunoprecipitation and PD-1/PD-L1 signaling pathway blockade bioassays. Surface plasmon resonance assay revealed that bis(benzonitrile) dichloroplatinum (II) bound to PD-1 (KD = 2.08 µM) but not PD-L1. In immune-competent wild-type mice but not in immunodeficient nude mice, bis(benzonitrile) dichloroplatinum (II) (7.5 mg/kg, i.p., every 3 days) significantly suppressed the growth of MC38 colorectal cancer xenografts with increasing tumor-infiltrating T cells. These data highlight that platinum compounds are potential immune checkpoint inhibitors for the treatment of cancers.


Cisplatin , Immune Checkpoint Inhibitors , Neoplasms , Animals , Humans , Mice , Antibodies , B7-H1 Antigen/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Mice, Nude , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors/pharmacology
7.
Eur J Med Chem ; 257: 115506, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-37216811

Previous work led to the rational design, synthesis and testing of novel antifungal triazole analogues bearing alkynyl-methoxyl side chains. Tests of in vitro antifungal activity showed Candida albicans SC5314 and Candida glabrata 537 gave MIC values of ≤0.125 µg/mL for most of the compounds. Among these, compounds 16, 18, and 29 displayed broad-spectrum antifungal activity against seven human pathogenic fungal species, two fluconazole-resistant C. albicans isolates and two multi-drug resistant Candida auris isolates. Moreover, 0.5 µg/mL of 16, 18, and 29 was more effective than 2 µg/mL of fluconazole at inhibiting fungal growth of the strains tested. The most active compound (16) completely inhibited the growth of C. albicans SC5314 at 16 µg/mL for 24 h, affected biofilm formation and destroyed the mature biofilm at 64 µg/mL. Several Saccharomyces cerevisiae strains, overexpressing recombinant Cyp51s or drug efflux pumps, indicated 16, 18, and 29 targeted Cyp51 without being significantly affected by a common active site mutation, but were susceptible to target overexpression and efflux by both MFS and ABC transporters. GC-MS analysis demonstrated that 16, 18, and 29 interfered with the C. albicans ergosterol biosynthesis pathway by inhibition at Cyp51. Molecular docking studies elucidated the binding modes of 18 with Cyp51. The compounds showed low cytotoxicity, low hemolytic activity and favorable ADMT properties. Importantly, compound 16 showed potent in vivo antifungal efficacy in the G. mellonella infection model. Taken together, this study presents more effective, broad-spectrum, low toxicity triazole analogues that can contribute to the development of novel antifungal agents and help overcome antifungal resistance.


Antifungal Agents , Triazoles , Humans , Antifungal Agents/pharmacology , Triazoles/pharmacology , Fluconazole/pharmacology , Molecular Docking Simulation , Microbial Sensitivity Tests , Candida albicans , Drug Resistance, Fungal , Saccharomyces cerevisiae
8.
Sci China Life Sci ; 66(8): 1869-1887, 2023 08.
Article En | MEDLINE | ID: mdl-37059927

Protein-biomolecule interactions play pivotal roles in almost all biological processes. For a biomolecule of interest, the identification of the interacting protein(s) is essential. For this need, although many assays are available, highly robust and reliable methods are always desired. By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin (SA)-biotin system, we developed the Specific Pupylation as IDEntity Reporter (SPIDER) method for identifying protein-biomolecule interactions. Using SPIDER, we validated the interactions between the known binding proteins of protein, DNA, RNA, and small molecule. We successfully applied SPIDER to construct the global protein interactome for m6A and mRNA, identified a variety of uncharacterized m6A binding proteins, and validated SRSF7 as a potential m6A reader. We globally identified the binding proteins for lenalidomide and CobB. Moreover, we identified SARS-CoV-2-specific receptors on the cell membrane. Overall, SPIDER is powerful and highly accessible for the study of protein-biomolecule interactions.


COVID-19 , Humans , SARS-CoV-2 , Proteins , Protein Binding
10.
J Clin Invest ; 133(9)2023 05 01.
Article En | MEDLINE | ID: mdl-36928177

Aurora A plays a critical role in G2/M transition and mitosis, making it an attractive target for cancer treatment. Aurora A inhibitors showed remarkable antitumor effects in preclinical studies, but unsatisfactory outcomes in clinical trials have greatly limited their development. In this study, the Aurora A inhibitor alisertib upregulated programmed death ligand 1 (PD-L1) expression in a panel of tumor cells both in vitro and in vivo. Upregulation of the checkpoint protein PD-L1 reduced antitumor immunity in immune-competent mice, paradoxically inhibiting the antitumor effects of alisertib. Mechanistically, Aurora A directly bound to and phosphorylated cyclic GMP-AMP synthase (cGAS), suppressing PD-L1 expression in tumor cells. Aurora A inhibition by alisertib activated the cGAS/stimulator of IFN genes (STING)/NF-κB pathway and promoted PD-L1 expression. Combining alisertib with anti-PD-L1 antibody improved antitumor immunity and enhanced the antitumor effects of alisertib in immune-competent mice. Our results, which reveal the immunomodulatory functions of Aurora A inhibitors and provide a plausible explanation for the poor clinical outcomes with their use, offer a potential approach to improve the antitumor efficacy of these inhibitors.


Aurora Kinase A , Protein Kinase Inhibitors , Animals , Mice , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , B7-H1 Antigen/genetics , Cell Line, Tumor , Nucleotidyltransferases , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Humans
11.
Bioorg Chem ; 129: 106216, 2022 12.
Article En | MEDLINE | ID: mdl-36283177

In order to develop new triazole derivatives, we optimized the lead compound a6 by structural modifications to obtain a series of (2R,3R)-3-((1-substituted-1H-1,2,3-triazol-4-yl) methoxy)-2-(2,4-difluorophenyl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol, compounds 5-36. Most of the target compounds exhibited excellent in vitro antifungal activity against Candida albicans 10231 and Candida glabrata 537 with MIC ≤ 0.125 µg/mL. Of particular note, compounds 6, 22, 28, 30 and 36 were highly active against Candida neoformans 32609 with MIC ≤ 0.125 µg/mL and showed broad-spectrum antifungal activity including against fluconazole-resistant Candida auris 891. In addition, compounds 6 and 22 demonstrated inhibitory effects on filamentation in the azole-resistant C. albicans isolate. Moreover, compounds 6 and 22 were minimally toxic to HUVECs and possessed weak inhibitory effects on the human CYP3A4 and CYP2D6. SARs and docking study further indicated that ortho-substituted groups in the terminal phenyl ring can promote the compounds to improve their antifungal activity.


Antifungal Agents , Triazoles , Humans , Antifungal Agents/chemistry , Triazoles/chemistry , Microbial Sensitivity Tests , Fluconazole/pharmacology , Candida albicans , Structure-Activity Relationship
12.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article En | MEDLINE | ID: mdl-36293157

Candida albicans is a typical opportunistic pathogen in humans that causes serious health risks in clinical fungal infections. The construction of mutant libraries has made remarkable developments in the study of C. albicans molecular and cellular biology with the ongoing advancements of gene editing, which include the application of CRISPR-Cas9 and novel high-efficient transposon. Large-scale genetic screens and genome-wide functional analysis accelerated the investigation of new genetic regulatory mechanisms associated with the pathogenicity and resistance to environmental stress in C. albicans. More importantly, sensitivity screening based on C. albicans mutant libraries is critical for the target identification of novel antifungal compounds, which leads to the discovery of Sec7p, Tfp1p, Gwt1p, Gln4p, and Erg11p. This review summarizes the main types of C. albicans mutant libraries and interprets their applications in morphogenesis, biofilm formation, fungus-host interactions, antifungal drug resistance, and target identification.


Antifungal Agents , Candida albicans , Humans , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Virulence , Genomics
13.
RSC Adv ; 12(24): 15479-15485, 2022 May 17.
Article En | MEDLINE | ID: mdl-35693249

Marine rare actinomycetes are an important source of secondary metabolites. From a marine-derived actinomycete Nonomuraea sp. MYH522, four new macrolactams, fluvirucins B7-B10, together with known fluvirucin B6 were isolated. Their structures were determined based on comprehensive analysis of HRESIMS and NMR spectroscopic data as well as by comparing 13C NMR resonances and optical rotation values with those for related congeners. Fluvirucins are characterized by a 14-membered macrolactam attached by an aminosugar moiety. The discovery of fluvirucins B6-B10 enriched the N-acetylated derivatives of fluvirucins. The diverse alkyl substituents at C-2 and C-6 implied substrate promiscuity in fluvirucin polyketide biosynthesis. These compounds didn't exhibit any antibacterial or antifungal activities when used alone, which suggested the importance of the free amino group in the antimicrobial activity of fluvirucins. However, fluvirucins B6, B9, and B10 showed synergistic antifungal activity with fluconazole against fluconazole-resistant isolates of Candida albicans.

14.
J Immunother Cancer ; 10(6)2022 06.
Article En | MEDLINE | ID: mdl-35728870

BACKGROUND: The repression or downregulation of programmed death-ligand 1 (PD-L1) can release its inhibition of T cells and activate antitumor immune responses. Although PD-1 and PD-L1 antibodies are promising treatments for diverse tumor types, their inherent disadvantages and immune-related adverse events remain significant issues. The development of small molecule inhibitors targeting the interaction surface of PD-1 and PD-L1 has been reviving, yet many challenges remain. To address these issues, we aimed to find small molecules with durable efficacy and favorable biosafety that alter PD-L1 surface expression and can be developed into a promising alternative and complementary therapy for existing anti-PD-1/PD-L1 therapies. METHODS: Cell-based screen of 200 metabolic molecules using a high-throughput flow cytometry assay of PD-L1 surface expression was conducted, and L-5-hydroxytryptophan (L-5-HTP) was found to suppress PD-L1 expression induced by interferon gamma (IFN-γ). Inhibition of PD-L1 induction and antitumor effect of L-5-HTP were evaluated in two syngeneic mouse tumor models. Flow cytometry was performed to investigate the change in the tumor microenvironment caused by L-5-HTP treatment. RESULTS: We discovered that L-5-HTP suppressed IFN-γ-induced PD-L1 expression in tumor cells transcriptionally, and this effect was directly due to itself. Mechanistically, L-5-HTP inhibited IFN-γ-induced expression of RTK ligands and thus suppressed phosphorylation-mediated activation of RTK receptors and the downstream MEK/ERK/c-JUN signaling cascade, leading to decreased PD-L1 induction. In syngeneic mouse tumor models, treatment with 100 mg/kg L-5-HTP (intraperitoneal) inhibited PD-L1 expression and exhibited antitumor effect. L-5-HTP upregulated the ratio of granzyme B+ CD8+ activated cytotoxic T cells. An intact immune system and PD-L1 expression was critical for L-5-HTP to exert its antitumor effects. Furthermore, L-5-HTP acted synergistically with PD-1 antibody to improve anticancer effect. CONCLUSION: Our study illustrated L-5-HTP's inhibitory effect on PD-L1 induction stimulated by IFN-γ in tumor cells and also provided insight into repurposing L-5-HTP for use in tumor immunotherapy.


5-Hydroxytryptophan , B7-H1 Antigen , Programmed Cell Death 1 Receptor , 5-Hydroxytryptophan/pharmacology , Animals , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Humans , Interferon-gamma/metabolism , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/biosynthesis , Programmed Cell Death 1 Receptor/immunology
15.
Analyst ; 147(13): 3096-3100, 2022 Jun 27.
Article En | MEDLINE | ID: mdl-35695068

Oxidized multi-walled carbon nanotube/nano-gold (AuNP-ox-MWCNT) composites with strong electrochemiluminescence (ECL) activity were applied to construct a new ECL immunosensor for the detection of carcinoembryonic antigen (CEA). The immunosensor showed a linear response range of 10-100 ng mL-1 and detection limit of 0.76 ng mL-1 (at a signal-to-noise ratio of 3). The as-developed immunosensor exhibited several advantages, including being simple to fabricate and being label free. The results indicated that ox-MWCNTs as a luminescent material have great application potential in analysis.


Biosensing Techniques , Metal Nanoparticles , Nanotubes, Carbon , Biosensing Techniques/methods , Carcinoembryonic Antigen/analysis , Electrochemical Techniques/methods , Gold , Immunoassay , Limit of Detection , Luminescent Measurements/methods
16.
Antibiotics (Basel) ; 10(8)2021 Aug 09.
Article En | MEDLINE | ID: mdl-34439006

Aurein1.2 is a 13-residue antimicrobial peptide secreted by the Australian tree frog Litoria aurea. In order to improve its stabilities, the helical contents and corresponding biological activities of Aurein1.2 (a series of stapled analogues) were synthesized, and their potential antifungal activities were evaluated. Not surprisingly, the stapled Aurein1.2 peptides showed higher proteolytic stability and helicity than the linear counterpart. The minimum inhibitory concentration (MIC) of ten stapled peptides against six strains of common pathogenic fungi was determined by the microscale broth dilution method recommended by CLSI. Of them, Sau-1, Sau-2, Sau-5, and Sau-9 exhibited better inhibitory effects on the fungi than the linear peptide. These stapled Aurein1.2 peptides may serve as the leading compounds for further optimization and antifungal therapy.

17.
Acta Pharmacol Sin ; 42(5): 801-813, 2021 May.
Article En | MEDLINE | ID: mdl-32796956

Grincamycins (GCNs) are a class of angucycline glycosides isolated from actinomycete Streptomyces strains that have potent antitumor activities, but their antitumor mechanisms remain unknown. In this study, we tried to identify the cellular target of grincamycin B (GCN B), one of most dominant and active secondary metabolites, using a combined strategy. We showed that GCN B-selective-induced apoptosis of human acute promyelocytic leukemia (APL) cell line NB4 through increase of ER stress and intracellular reactive oxygen species (ROS) accumulation. Using a strategy of combining phenotype, transcriptomics and protein microarray approaches, we identified that isocitrate dehydrogenase 1(IDH1) was the putative target of GCN B, and confirmed that GCNs were a subset of selective inhibitors targeting both wild-type and mutant IDH1 in vitro. It is well-known that IDH1 converts isocitrate to 2-oxoglutarate (2-OG), maintaining intracellular 2-OG homeostasis. IDH1 and its mutant as the target of GCN B were validated in NB4 cells and zebrafish model. Knockdown of IDH1 in NB4 cells caused the similar phenotype as GCN B treatment, and supplementation of N-acetylcysteine partially rescued the apoptosis caused by IDH1 interference in NB4 cells. In zebrafish model, GCN B effectively restored myeloid abnormality caused by overexpression of mutant IDH1(R132C). Taken together, we demonstrate that IDH1 is one of the antitumor targets of GCNs, suggesting wild-type IDH1 may be a potential target for hematological malignancies intervention in the future.


Anthraquinones/pharmacology , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Glycosides/pharmacology , Isocitrate Dehydrogenase/antagonists & inhibitors , Animals , Anthraquinones/metabolism , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects , Enzyme Inhibitors/metabolism , Glycosides/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Ketoglutaric Acids/metabolism , Molecular Docking Simulation , Mutation , Protein Binding , Reactive Oxygen Species/metabolism , Zebrafish
19.
Bioorg Chem ; 101: 103982, 2020 08.
Article En | MEDLINE | ID: mdl-32534348

In order to develop novel antifungal agents, based on our previous work, a series of (2R,3R)-3-((3-substitutied-isoxazol-5-yl)methoxy)-2-(2,4-difluorophenyl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol (a1-a26) were designed and synthesized. All of the compounds exhibited good in vitro antifungal activities against eight human pathogenic fungi. Among them, compound a6 showed excellent inhibitory activity against Candida albicans and Candida parasilosis with MIC80 values of 0.0313 µg/mL. In addition, compounds a6, a9, a12, a13 and a14 exhibited moderate inhibitory activities against fluconazole-resistant isolates with MIC80 values ranging from 8 µg/mL to 16 µg/mL. Furthermore, compounds a6, a12 and a23 exhibited low inhibition profiles for CYP3A4. Clear SARs were analyzed, and the molecular docking experiment was carried out to further investigate the relationship between a6 and the target enzyme CYP51.


Antifungal Agents/therapeutic use , Candida albicans/drug effects , Isoxazoles/chemistry , Molecular Docking Simulation/methods , Triazoles/chemical synthesis , Triazoles/therapeutic use , Antifungal Agents/pharmacology , Humans , Molecular Structure , Structure-Activity Relationship , Triazoles/chemistry
...